Category Archive : Blog

Nasdaq-Listed Marathon Begins Bitcoin Mining Operations, Stock Up 32%

With the long awaited geth 1.5 (“let there bee light”) release, Swarm made it into the official go-ethereum release as an experimental feature. The current version of the code is POC 0.2 RC5 — “embrace your daemons” (roadmap), which is the refactored and cleaner version of the codebase that was running on the Swarm toynet in the past months.

The current release ships with the swarmcommand that launches a standalone Swarm daemon as separate process using your favourite IPC-compliant ethereum client if needed. Bandwidth accounting (using the Swarm Accounting Protocol = SWAP) is responsible for smooth operation and speedy content delivery by incentivising nodes to contribute their bandwidth and relay data. The SWAP system is functional but it is switched off by default. Storage incentives (punitive insurance) to protect availability of rarely-accessed content is planned to be operational in POC 0.4. So currently by default, the client uses the blockchain only for domain name resolution.

With this blog post we are happy to announce the launch of our shiny new Swarm testnet connected to the Ropsten ethereum testchain. The Ethereum Foundation is contributing a 35-strong (will be up to 105) Swarm cluster running on the Azure cloud. It is hosting the Swarm homepage.

We consider this testnet as the first public pilot, and the community is welcome to join the network, contribute resources, issues, identify painpoints and give feedback on useability. Instructions can be found in the Swarm guide. We encourage those who can afford to run persistent nodes (nodes that stay online) to get in touch. We have already received promises for 100TB deployments. Note that the testnet offers no guarantees! Data may be lost or become unavailable. Indeed guarantees of persistence cannot be made at least until the storage insurance incentive layer is implemented.

Note that the testnet offers no guarantees! Data may be lost or become unavailable. Indeed guarantees of persistence cannot be made at least until the storage insurance incentive layer is implemented.

We envision shaping this project with more and more community involvement, so we are inviting those interested to join

How does Swarm work?

Swarm is a distributed storage platform and content distribution service; a native base layer service of the ethereum Web3 stack. The objective is a peer-to-peer storage and serving solution that has zero downtime, is DDOS-resistant, fault-tolerant and censorship-resistant as well as self-sustaining due to a built-in incentive system. The incentive layer uses peer-to-peer accounting for bandwidth, deposit-based storage incentives and allows trading resources for payment. Swarm is designed to deeply integrate with the devp2p multiprotocol network layer of Ethereum as well as with the Ethereum blockchain for domain name resolution.

Swarm’s main offering as a distributed chunkstore is that you can upload content to it. The nodes constituting the Swarm all dedicate resources (diskspace, memory, bandwidth and CPU) to store and serve chunks. But what determines who is keeping a chunk? Swarm nodes have an address (the hash of the address of their bzz-account) in the same keyspace as the chunks themselves. Lets call this address space the overlay network. If we upload a chunk to the Swarm, the protocol determines that it will eventually end up being stored at nodes that are closest to the chunk’s address (according to a well-defined distance measure on the overlay address space). The process by which chunks get to their address is called syncing and is part of the protocol. Nodes that later want to retrieve the content can find it again by forwarding a query to nodes that are close the the content’s address. Indeed, when a node needs a chunk, it simply posts a request to the Swarm with the address of the content, and the Swarm will forward the requests until the data is found (or the request times out). In this regard, Swarm is similar to a traditional distributed hash table (DHT) but with two important (and under-researched) features.

  • Vitalik’s whitepaper the Ethereum dev core realised
  • When she reached the first hills
  • A small river named Duden flows
  • Self-sustaining due to a built-in incentive system
Documents and the Swarm hash

On the API layer Swarm provides a chunker. The chunker takes any kind of readable source, such as a file or a video camera capture device, and chops it into fix-sized chunks. These so-called data chunks or leaf chunks are hashed and then synced with peers. The hashes of the data chunks are then packaged into chunks themselves (called intermediate chunks) and the process is repeated. Currently 128 hashes make up a new chunk. As a result the data is represented by a merkle tree, and it is the root hash of the tree that acts as the address you use to retrieve the uploaded file.

Meet the Bitcoin Cash Hyper Mini-Sprint Car

With the long awaited geth 1.5 (“let there bee light”) release, Swarm made it into the official go-ethereum release as an experimental feature. The current version of the code is POC 0.2 RC5 — “embrace your daemons” (roadmap), which is the refactored and cleaner version of the codebase that was running on the Swarm toynet in the past months.

The current release ships with the swarmcommand that launches a standalone Swarm daemon as separate process using your favourite IPC-compliant ethereum client if needed. Bandwidth accounting (using the Swarm Accounting Protocol = SWAP) is responsible for smooth operation and speedy content delivery by incentivising nodes to contribute their bandwidth and relay data. The SWAP system is functional but it is switched off by default. Storage incentives (punitive insurance) to protect availability of rarely-accessed content is planned to be operational in POC 0.4. So currently by default, the client uses the blockchain only for domain name resolution.

With this blog post we are happy to announce the launch of our shiny new Swarm testnet connected to the Ropsten ethereum testchain. The Ethereum Foundation is contributing a 35-strong (will be up to 105) Swarm cluster running on the Azure cloud. It is hosting the Swarm homepage.

We consider this testnet as the first public pilot, and the community is welcome to join the network, contribute resources, issues, identify painpoints and give feedback on useability. Instructions can be found in the Swarm guide. We encourage those who can afford to run persistent nodes (nodes that stay online) to get in touch. We have already received promises for 100TB deployments. Note that the testnet offers no guarantees! Data may be lost or become unavailable. Indeed guarantees of persistence cannot be made at least until the storage insurance incentive layer is implemented.

Note that the testnet offers no guarantees! Data may be lost or become unavailable. Indeed guarantees of persistence cannot be made at least until the storage insurance incentive layer is implemented.

We envision shaping this project with more and more community involvement, so we are inviting those interested to join

How does Swarm work?

Swarm is a distributed storage platform and content distribution service; a native base layer service of the ethereum Web3 stack. The objective is a peer-to-peer storage and serving solution that has zero downtime, is DDOS-resistant, fault-tolerant and censorship-resistant as well as self-sustaining due to a built-in incentive system. The incentive layer uses peer-to-peer accounting for bandwidth, deposit-based storage incentives and allows trading resources for payment. Swarm is designed to deeply integrate with the devp2p multiprotocol network layer of Ethereum as well as with the Ethereum blockchain for domain name resolution.

Swarm’s main offering as a distributed chunkstore is that you can upload content to it. The nodes constituting the Swarm all dedicate resources (diskspace, memory, bandwidth and CPU) to store and serve chunks. But what determines who is keeping a chunk? Swarm nodes have an address (the hash of the address of their bzz-account) in the same keyspace as the chunks themselves. Lets call this address space the overlay network. If we upload a chunk to the Swarm, the protocol determines that it will eventually end up being stored at nodes that are closest to the chunk’s address (according to a well-defined distance measure on the overlay address space). The process by which chunks get to their address is called syncing and is part of the protocol. Nodes that later want to retrieve the content can find it again by forwarding a query to nodes that are close the the content’s address. Indeed, when a node needs a chunk, it simply posts a request to the Swarm with the address of the content, and the Swarm will forward the requests until the data is found (or the request times out). In this regard, Swarm is similar to a traditional distributed hash table (DHT) but with two important (and under-researched) features.

  • Vitalik’s whitepaper the Ethereum dev core realised
  • When she reached the first hills
  • A small river named Duden flows
  • Self-sustaining due to a built-in incentive system
Documents and the Swarm hash

On the API layer Swarm provides a chunker. The chunker takes any kind of readable source, such as a file or a video camera capture device, and chops it into fix-sized chunks. These so-called data chunks or leaf chunks are hashed and then synced with peers. The hashes of the data chunks are then packaged into chunks themselves (called intermediate chunks) and the process is repeated. Currently 128 hashes make up a new chunk. As a result the data is represented by a merkle tree, and it is the root hash of the tree that acts as the address you use to retrieve the uploaded file.

Survey Finds South Korean Youth the Most Active Crypto-Investors

With the long awaited geth 1.5 (“let there bee light”) release, Swarm made it into the official go-ethereum release as an experimental feature. The current version of the code is POC 0.2 RC5 — “embrace your daemons” (roadmap), which is the refactored and cleaner version of the codebase that was running on the Swarm toynet in the past months.

The current release ships with the swarmcommand that launches a standalone Swarm daemon as separate process using your favourite IPC-compliant ethereum client if needed. Bandwidth accounting (using the Swarm Accounting Protocol = SWAP) is responsible for smooth operation and speedy content delivery by incentivising nodes to contribute their bandwidth and relay data. The SWAP system is functional but it is switched off by default. Storage incentives (punitive insurance) to protect availability of rarely-accessed content is planned to be operational in POC 0.4. So currently by default, the client uses the blockchain only for domain name resolution.

With this blog post we are happy to announce the launch of our shiny new Swarm testnet connected to the Ropsten ethereum testchain. The Ethereum Foundation is contributing a 35-strong (will be up to 105) Swarm cluster running on the Azure cloud. It is hosting the Swarm homepage.

We consider this testnet as the first public pilot, and the community is welcome to join the network, contribute resources, issues, identify painpoints and give feedback on useability. Instructions can be found in the Swarm guide. We encourage those who can afford to run persistent nodes (nodes that stay online) to get in touch. We have already received promises for 100TB deployments. Note that the testnet offers no guarantees! Data may be lost or become unavailable. Indeed guarantees of persistence cannot be made at least until the storage insurance incentive layer is implemented.

Note that the testnet offers no guarantees! Data may be lost or become unavailable. Indeed guarantees of persistence cannot be made at least until the storage insurance incentive layer is implemented.

We envision shaping this project with more and more community involvement, so we are inviting those interested to join

How does Swarm work?

Swarm is a distributed storage platform and content distribution service; a native base layer service of the ethereum Web3 stack. The objective is a peer-to-peer storage and serving solution that has zero downtime, is DDOS-resistant, fault-tolerant and censorship-resistant as well as self-sustaining due to a built-in incentive system. The incentive layer uses peer-to-peer accounting for bandwidth, deposit-based storage incentives and allows trading resources for payment. Swarm is designed to deeply integrate with the devp2p multiprotocol network layer of Ethereum as well as with the Ethereum blockchain for domain name resolution.

Swarm’s main offering as a distributed chunkstore is that you can upload content to it. The nodes constituting the Swarm all dedicate resources (diskspace, memory, bandwidth and CPU) to store and serve chunks. But what determines who is keeping a chunk? Swarm nodes have an address (the hash of the address of their bzz-account) in the same keyspace as the chunks themselves. Lets call this address space the overlay network. If we upload a chunk to the Swarm, the protocol determines that it will eventually end up being stored at nodes that are closest to the chunk’s address (according to a well-defined distance measure on the overlay address space). The process by which chunks get to their address is called syncing and is part of the protocol. Nodes that later want to retrieve the content can find it again by forwarding a query to nodes that are close the the content’s address. Indeed, when a node needs a chunk, it simply posts a request to the Swarm with the address of the content, and the Swarm will forward the requests until the data is found (or the request times out). In this regard, Swarm is similar to a traditional distributed hash table (DHT) but with two important (and under-researched) features.

  • Vitalik’s whitepaper the Ethereum dev core realised
  • When she reached the first hills
  • A small river named Duden flows
  • Self-sustaining due to a built-in incentive system
Documents and the Swarm hash

On the API layer Swarm provides a chunker. The chunker takes any kind of readable source, such as a file or a video camera capture device, and chops it into fix-sized chunks. These so-called data chunks or leaf chunks are hashed and then synced with peers. The hashes of the data chunks are then packaged into chunks themselves (called intermediate chunks) and the process is repeated. Currently 128 hashes make up a new chunk. As a result the data is represented by a merkle tree, and it is the root hash of the tree that acts as the address you use to retrieve the uploaded file.

Large Mining Farm Discovered in Abandoned Russian Factory

With the long awaited geth 1.5 (“let there bee light”) release, Swarm made it into the official go-ethereum release as an experimental feature. The current version of the code is POC 0.2 RC5 — “embrace your daemons” (roadmap), which is the refactored and cleaner version of the codebase that was running on the Swarm toynet in the past months.

The current release ships with the swarmcommand that launches a standalone Swarm daemon as separate process using your favourite IPC-compliant ethereum client if needed. Bandwidth accounting (using the Swarm Accounting Protocol = SWAP) is responsible for smooth operation and speedy content delivery by incentivising nodes to contribute their bandwidth and relay data. The SWAP system is functional but it is switched off by default. Storage incentives (punitive insurance) to protect availability of rarely-accessed content is planned to be operational in POC 0.4. So currently by default, the client uses the blockchain only for domain name resolution.

With this blog post we are happy to announce the launch of our shiny new Swarm testnet connected to the Ropsten ethereum testchain. The Ethereum Foundation is contributing a 35-strong (will be up to 105) Swarm cluster running on the Azure cloud. It is hosting the Swarm homepage.

We consider this testnet as the first public pilot, and the community is welcome to join the network, contribute resources, issues, identify painpoints and give feedback on useability. Instructions can be found in the Swarm guide. We encourage those who can afford to run persistent nodes (nodes that stay online) to get in touch. We have already received promises for 100TB deployments. Note that the testnet offers no guarantees! Data may be lost or become unavailable. Indeed guarantees of persistence cannot be made at least until the storage insurance incentive layer is implemented.

Note that the testnet offers no guarantees! Data may be lost or become unavailable. Indeed guarantees of persistence cannot be made at least until the storage insurance incentive layer is implemented.

We envision shaping this project with more and more community involvement, so we are inviting those interested to join

How does Swarm work?

Swarm is a distributed storage platform and content distribution service; a native base layer service of the ethereum Web3 stack. The objective is a peer-to-peer storage and serving solution that has zero downtime, is DDOS-resistant, fault-tolerant and censorship-resistant as well as self-sustaining due to a built-in incentive system. The incentive layer uses peer-to-peer accounting for bandwidth, deposit-based storage incentives and allows trading resources for payment. Swarm is designed to deeply integrate with the devp2p multiprotocol network layer of Ethereum as well as with the Ethereum blockchain for domain name resolution.

Swarm’s main offering as a distributed chunkstore is that you can upload content to it. The nodes constituting the Swarm all dedicate resources (diskspace, memory, bandwidth and CPU) to store and serve chunks. But what determines who is keeping a chunk? Swarm nodes have an address (the hash of the address of their bzz-account) in the same keyspace as the chunks themselves. Lets call this address space the overlay network. If we upload a chunk to the Swarm, the protocol determines that it will eventually end up being stored at nodes that are closest to the chunk’s address (according to a well-defined distance measure on the overlay address space). The process by which chunks get to their address is called syncing and is part of the protocol. Nodes that later want to retrieve the content can find it again by forwarding a query to nodes that are close the the content’s address. Indeed, when a node needs a chunk, it simply posts a request to the Swarm with the address of the content, and the Swarm will forward the requests until the data is found (or the request times out). In this regard, Swarm is similar to a traditional distributed hash table (DHT) but with two important (and under-researched) features.

  • Vitalik’s whitepaper the Ethereum dev core realised
  • When she reached the first hills
  • A small river named Duden flows
  • Self-sustaining due to a built-in incentive system
Documents and the Swarm hash

On the API layer Swarm provides a chunker. The chunker takes any kind of readable source, such as a file or a video camera capture device, and chops it into fix-sized chunks. These so-called data chunks or leaf chunks are hashed and then synced with peers. The hashes of the data chunks are then packaged into chunks themselves (called intermediate chunks) and the process is repeated. Currently 128 hashes make up a new chunk. As a result the data is represented by a merkle tree, and it is the root hash of the tree that acts as the address you use to retrieve the uploaded file.

World’s Central Bank: Crypto Could Risk Bank Runs

With the long awaited geth 1.5 (“let there bee light”) release, Swarm made it into the official go-ethereum release as an experimental feature. The current version of the code is POC 0.2 RC5 — “embrace your daemons” (roadmap), which is the refactored and cleaner version of the codebase that was running on the Swarm toynet in the past months.

The current release ships with the swarmcommand that launches a standalone Swarm daemon as separate process using your favourite IPC-compliant ethereum client if needed. Bandwidth accounting (using the Swarm Accounting Protocol = SWAP) is responsible for smooth operation and speedy content delivery by incentivising nodes to contribute their bandwidth and relay data. The SWAP system is functional but it is switched off by default. Storage incentives (punitive insurance) to protect availability of rarely-accessed content is planned to be operational in POC 0.4. So currently by default, the client uses the blockchain only for domain name resolution.

With this blog post we are happy to announce the launch of our shiny new Swarm testnet connected to the Ropsten ethereum testchain. The Ethereum Foundation is contributing a 35-strong (will be up to 105) Swarm cluster running on the Azure cloud. It is hosting the Swarm homepage.

We consider this testnet as the first public pilot, and the community is welcome to join the network, contribute resources, issues, identify painpoints and give feedback on useability. Instructions can be found in the Swarm guide. We encourage those who can afford to run persistent nodes (nodes that stay online) to get in touch. We have already received promises for 100TB deployments. Note that the testnet offers no guarantees! Data may be lost or become unavailable. Indeed guarantees of persistence cannot be made at least until the storage insurance incentive layer is implemented.

Note that the testnet offers no guarantees! Data may be lost or become unavailable. Indeed guarantees of persistence cannot be made at least until the storage insurance incentive layer is implemented.

We envision shaping this project with more and more community involvement, so we are inviting those interested to join

How does Swarm work?

Swarm is a distributed storage platform and content distribution service; a native base layer service of the ethereum Web3 stack. The objective is a peer-to-peer storage and serving solution that has zero downtime, is DDOS-resistant, fault-tolerant and censorship-resistant as well as self-sustaining due to a built-in incentive system. The incentive layer uses peer-to-peer accounting for bandwidth, deposit-based storage incentives and allows trading resources for payment. Swarm is designed to deeply integrate with the devp2p multiprotocol network layer of Ethereum as well as with the Ethereum blockchain for domain name resolution.

Swarm’s main offering as a distributed chunkstore is that you can upload content to it. The nodes constituting the Swarm all dedicate resources (diskspace, memory, bandwidth and CPU) to store and serve chunks. But what determines who is keeping a chunk? Swarm nodes have an address (the hash of the address of their bzz-account) in the same keyspace as the chunks themselves. Lets call this address space the overlay network. If we upload a chunk to the Swarm, the protocol determines that it will eventually end up being stored at nodes that are closest to the chunk’s address (according to a well-defined distance measure on the overlay address space). The process by which chunks get to their address is called syncing and is part of the protocol. Nodes that later want to retrieve the content can find it again by forwarding a query to nodes that are close the the content’s address. Indeed, when a node needs a chunk, it simply posts a request to the Swarm with the address of the content, and the Swarm will forward the requests until the data is found (or the request times out). In this regard, Swarm is similar to a traditional distributed hash table (DHT) but with two important (and under-researched) features.

  • Vitalik’s whitepaper the Ethereum dev core realised
  • When she reached the first hills
  • A small river named Duden flows
  • Self-sustaining due to a built-in incentive system
Documents and the Swarm hash

On the API layer Swarm provides a chunker. The chunker takes any kind of readable source, such as a file or a video camera capture device, and chops it into fix-sized chunks. These so-called data chunks or leaf chunks are hashed and then synced with peers. The hashes of the data chunks are then packaged into chunks themselves (called intermediate chunks) and the process is repeated. Currently 128 hashes make up a new chunk. As a result the data is represented by a merkle tree, and it is the root hash of the tree that acts as the address you use to retrieve the uploaded file.

South Carolina Declares Cloud Mining Contracts to Be Securities

With the long awaited geth 1.5 (“let there bee light”) release, Swarm made it into the official go-ethereum release as an experimental feature. The current version of the code is POC 0.2 RC5 — “embrace your daemons” (roadmap), which is the refactored and cleaner version of the codebase that was running on the Swarm toynet in the past months.

The current release ships with the swarmcommand that launches a standalone Swarm daemon as separate process using your favourite IPC-compliant ethereum client if needed. Bandwidth accounting (using the Swarm Accounting Protocol = SWAP) is responsible for smooth operation and speedy content delivery by incentivising nodes to contribute their bandwidth and relay data. The SWAP system is functional but it is switched off by default. Storage incentives (punitive insurance) to protect availability of rarely-accessed content is planned to be operational in POC 0.4. So currently by default, the client uses the blockchain only for domain name resolution.

With this blog post we are happy to announce the launch of our shiny new Swarm testnet connected to the Ropsten ethereum testchain. The Ethereum Foundation is contributing a 35-strong (will be up to 105) Swarm cluster running on the Azure cloud. It is hosting the Swarm homepage.

We consider this testnet as the first public pilot, and the community is welcome to join the network, contribute resources, issues, identify painpoints and give feedback on useability. Instructions can be found in the Swarm guide. We encourage those who can afford to run persistent nodes (nodes that stay online) to get in touch. We have already received promises for 100TB deployments. Note that the testnet offers no guarantees! Data may be lost or become unavailable. Indeed guarantees of persistence cannot be made at least until the storage insurance incentive layer is implemented.

Note that the testnet offers no guarantees! Data may be lost or become unavailable. Indeed guarantees of persistence cannot be made at least until the storage insurance incentive layer is implemented.

We envision shaping this project with more and more community involvement, so we are inviting those interested to join

How does Swarm work?

Swarm is a distributed storage platform and content distribution service; a native base layer service of the ethereum Web3 stack. The objective is a peer-to-peer storage and serving solution that has zero downtime, is DDOS-resistant, fault-tolerant and censorship-resistant as well as self-sustaining due to a built-in incentive system. The incentive layer uses peer-to-peer accounting for bandwidth, deposit-based storage incentives and allows trading resources for payment. Swarm is designed to deeply integrate with the devp2p multiprotocol network layer of Ethereum as well as with the Ethereum blockchain for domain name resolution.

Swarm’s main offering as a distributed chunkstore is that you can upload content to it. The nodes constituting the Swarm all dedicate resources (diskspace, memory, bandwidth and CPU) to store and serve chunks. But what determines who is keeping a chunk? Swarm nodes have an address (the hash of the address of their bzz-account) in the same keyspace as the chunks themselves. Lets call this address space the overlay network. If we upload a chunk to the Swarm, the protocol determines that it will eventually end up being stored at nodes that are closest to the chunk’s address (according to a well-defined distance measure on the overlay address space). The process by which chunks get to their address is called syncing and is part of the protocol. Nodes that later want to retrieve the content can find it again by forwarding a query to nodes that are close the the content’s address. Indeed, when a node needs a chunk, it simply posts a request to the Swarm with the address of the content, and the Swarm will forward the requests until the data is found (or the request times out). In this regard, Swarm is similar to a traditional distributed hash table (DHT) but with two important (and under-researched) features.

  • Vitalik’s whitepaper the Ethereum dev core realised
  • When she reached the first hills
  • A small river named Duden flows
  • Self-sustaining due to a built-in incentive system
Documents and the Swarm hash

On the API layer Swarm provides a chunker. The chunker takes any kind of readable source, such as a file or a video camera capture device, and chops it into fix-sized chunks. These so-called data chunks or leaf chunks are hashed and then synced with peers. The hashes of the data chunks are then packaged into chunks themselves (called intermediate chunks) and the process is repeated. Currently 128 hashes make up a new chunk. As a result the data is represented by a merkle tree, and it is the root hash of the tree that acts as the address you use to retrieve the uploaded file.

EOS, Cardano and Tezos: Sleeping Giants Starting to Stir

With the long awaited geth 1.5 (“let there bee light”) release, Swarm made it into the official go-ethereum release as an experimental feature. The current version of the code is POC 0.2 RC5 — “embrace your daemons” (roadmap), which is the refactored and cleaner version of the codebase that was running on the Swarm toynet in the past months.

The current release ships with the swarmcommand that launches a standalone Swarm daemon as separate process using your favourite IPC-compliant ethereum client if needed. Bandwidth accounting (using the Swarm Accounting Protocol = SWAP) is responsible for smooth operation and speedy content delivery by incentivising nodes to contribute their bandwidth and relay data. The SWAP system is functional but it is switched off by default. Storage incentives (punitive insurance) to protect availability of rarely-accessed content is planned to be operational in POC 0.4. So currently by default, the client uses the blockchain only for domain name resolution.

With this blog post we are happy to announce the launch of our shiny new Swarm testnet connected to the Ropsten ethereum testchain. The Ethereum Foundation is contributing a 35-strong (will be up to 105) Swarm cluster running on the Azure cloud. It is hosting the Swarm homepage.

We consider this testnet as the first public pilot, and the community is welcome to join the network, contribute resources, issues, identify painpoints and give feedback on useability. Instructions can be found in the Swarm guide. We encourage those who can afford to run persistent nodes (nodes that stay online) to get in touch. We have already received promises for 100TB deployments. Note that the testnet offers no guarantees! Data may be lost or become unavailable. Indeed guarantees of persistence cannot be made at least until the storage insurance incentive layer is implemented.

Note that the testnet offers no guarantees! Data may be lost or become unavailable. Indeed guarantees of persistence cannot be made at least until the storage insurance incentive layer is implemented.

We envision shaping this project with more and more community involvement, so we are inviting those interested to join

How does Swarm work?

Swarm is a distributed storage platform and content distribution service; a native base layer service of the ethereum Web3 stack. The objective is a peer-to-peer storage and serving solution that has zero downtime, is DDOS-resistant, fault-tolerant and censorship-resistant as well as self-sustaining due to a built-in incentive system. The incentive layer uses peer-to-peer accounting for bandwidth, deposit-based storage incentives and allows trading resources for payment. Swarm is designed to deeply integrate with the devp2p multiprotocol network layer of Ethereum as well as with the Ethereum blockchain for domain name resolution.

Swarm’s main offering as a distributed chunkstore is that you can upload content to it. The nodes constituting the Swarm all dedicate resources (diskspace, memory, bandwidth and CPU) to store and serve chunks. But what determines who is keeping a chunk? Swarm nodes have an address (the hash of the address of their bzz-account) in the same keyspace as the chunks themselves. Lets call this address space the overlay network. If we upload a chunk to the Swarm, the protocol determines that it will eventually end up being stored at nodes that are closest to the chunk’s address (according to a well-defined distance measure on the overlay address space). The process by which chunks get to their address is called syncing and is part of the protocol. Nodes that later want to retrieve the content can find it again by forwarding a query to nodes that are close the the content’s address. Indeed, when a node needs a chunk, it simply posts a request to the Swarm with the address of the content, and the Swarm will forward the requests until the data is found (or the request times out). In this regard, Swarm is similar to a traditional distributed hash table (DHT) but with two important (and under-researched) features.

  • Vitalik’s whitepaper the Ethereum dev core realised
  • When she reached the first hills
  • A small river named Duden flows
  • Self-sustaining due to a built-in incentive system
Documents and the Swarm hash

On the API layer Swarm provides a chunker. The chunker takes any kind of readable source, such as a file or a video camera capture device, and chops it into fix-sized chunks. These so-called data chunks or leaf chunks are hashed and then synced with peers. The hashes of the data chunks are then packaged into chunks themselves (called intermediate chunks) and the process is repeated. Currently 128 hashes make up a new chunk. As a result the data is represented by a merkle tree, and it is the root hash of the tree that acts as the address you use to retrieve the uploaded file.

Blogger ‘Bitfinex’ed’ Hires Legal Counsel to Fight Bitfinex Lawsuit

With the long awaited geth 1.5 (“let there bee light”) release, Swarm made it into the official go-ethereum release as an experimental feature. The current version of the code is POC 0.2 RC5 — “embrace your daemons” (roadmap), which is the refactored and cleaner version of the codebase that was running on the Swarm toynet in the past months.

The current release ships with the swarmcommand that launches a standalone Swarm daemon as separate process using your favourite IPC-compliant ethereum client if needed. Bandwidth accounting (using the Swarm Accounting Protocol = SWAP) is responsible for smooth operation and speedy content delivery by incentivising nodes to contribute their bandwidth and relay data. The SWAP system is functional but it is switched off by default. Storage incentives (punitive insurance) to protect availability of rarely-accessed content is planned to be operational in POC 0.4. So currently by default, the client uses the blockchain only for domain name resolution.

With this blog post we are happy to announce the launch of our shiny new Swarm testnet connected to the Ropsten ethereum testchain. The Ethereum Foundation is contributing a 35-strong (will be up to 105) Swarm cluster running on the Azure cloud. It is hosting the Swarm homepage.

We consider this testnet as the first public pilot, and the community is welcome to join the network, contribute resources, issues, identify painpoints and give feedback on useability. Instructions can be found in the Swarm guide. We encourage those who can afford to run persistent nodes (nodes that stay online) to get in touch. We have already received promises for 100TB deployments. Note that the testnet offers no guarantees! Data may be lost or become unavailable. Indeed guarantees of persistence cannot be made at least until the storage insurance incentive layer is implemented.

Note that the testnet offers no guarantees! Data may be lost or become unavailable. Indeed guarantees of persistence cannot be made at least until the storage insurance incentive layer is implemented.

We envision shaping this project with more and more community involvement, so we are inviting those interested to join

How does Swarm work?

Swarm is a distributed storage platform and content distribution service; a native base layer service of the ethereum Web3 stack. The objective is a peer-to-peer storage and serving solution that has zero downtime, is DDOS-resistant, fault-tolerant and censorship-resistant as well as self-sustaining due to a built-in incentive system. The incentive layer uses peer-to-peer accounting for bandwidth, deposit-based storage incentives and allows trading resources for payment. Swarm is designed to deeply integrate with the devp2p multiprotocol network layer of Ethereum as well as with the Ethereum blockchain for domain name resolution.

Swarm’s main offering as a distributed chunkstore is that you can upload content to it. The nodes constituting the Swarm all dedicate resources (diskspace, memory, bandwidth and CPU) to store and serve chunks. But what determines who is keeping a chunk? Swarm nodes have an address (the hash of the address of their bzz-account) in the same keyspace as the chunks themselves. Lets call this address space the overlay network. If we upload a chunk to the Swarm, the protocol determines that it will eventually end up being stored at nodes that are closest to the chunk’s address (according to a well-defined distance measure on the overlay address space). The process by which chunks get to their address is called syncing and is part of the protocol. Nodes that later want to retrieve the content can find it again by forwarding a query to nodes that are close the the content’s address. Indeed, when a node needs a chunk, it simply posts a request to the Swarm with the address of the content, and the Swarm will forward the requests until the data is found (or the request times out). In this regard, Swarm is similar to a traditional distributed hash table (DHT) but with two important (and under-researched) features.

  • Vitalik’s whitepaper the Ethereum dev core realised
  • When she reached the first hills
  • A small river named Duden flows
  • Self-sustaining due to a built-in incentive system
Documents and the Swarm hash

On the API layer Swarm provides a chunker. The chunker takes any kind of readable source, such as a file or a video camera capture device, and chops it into fix-sized chunks. These so-called data chunks or leaf chunks are hashed and then synced with peers. The hashes of the data chunks are then packaged into chunks themselves (called intermediate chunks) and the process is repeated. Currently 128 hashes make up a new chunk. As a result the data is represented by a merkle tree, and it is the root hash of the tree that acts as the address you use to retrieve the uploaded file.

Dutch Finance Minister Advocates Changes to European Crypto Laws

With the long awaited geth 1.5 (“let there bee light”) release, Swarm made it into the official go-ethereum release as an experimental feature. The current version of the code is POC 0.2 RC5 — “embrace your daemons” (roadmap), which is the refactored and cleaner version of the codebase that was running on the Swarm toynet in the past months.

The current release ships with the swarmcommand that launches a standalone Swarm daemon as separate process using your favourite IPC-compliant ethereum client if needed. Bandwidth accounting (using the Swarm Accounting Protocol = SWAP) is responsible for smooth operation and speedy content delivery by incentivising nodes to contribute their bandwidth and relay data. The SWAP system is functional but it is switched off by default. Storage incentives (punitive insurance) to protect availability of rarely-accessed content is planned to be operational in POC 0.4. So currently by default, the client uses the blockchain only for domain name resolution.

With this blog post we are happy to announce the launch of our shiny new Swarm testnet connected to the Ropsten ethereum testchain. The Ethereum Foundation is contributing a 35-strong (will be up to 105) Swarm cluster running on the Azure cloud. It is hosting the Swarm homepage.

We consider this testnet as the first public pilot, and the community is welcome to join the network, contribute resources, issues, identify painpoints and give feedback on useability. Instructions can be found in the Swarm guide. We encourage those who can afford to run persistent nodes (nodes that stay online) to get in touch. We have already received promises for 100TB deployments. Note that the testnet offers no guarantees! Data may be lost or become unavailable. Indeed guarantees of persistence cannot be made at least until the storage insurance incentive layer is implemented.

Note that the testnet offers no guarantees! Data may be lost or become unavailable. Indeed guarantees of persistence cannot be made at least until the storage insurance incentive layer is implemented.

We envision shaping this project with more and more community involvement, so we are inviting those interested to join

How does Swarm work?

Swarm is a distributed storage platform and content distribution service; a native base layer service of the ethereum Web3 stack. The objective is a peer-to-peer storage and serving solution that has zero downtime, is DDOS-resistant, fault-tolerant and censorship-resistant as well as self-sustaining due to a built-in incentive system. The incentive layer uses peer-to-peer accounting for bandwidth, deposit-based storage incentives and allows trading resources for payment. Swarm is designed to deeply integrate with the devp2p multiprotocol network layer of Ethereum as well as with the Ethereum blockchain for domain name resolution.

Swarm’s main offering as a distributed chunkstore is that you can upload content to it. The nodes constituting the Swarm all dedicate resources (diskspace, memory, bandwidth and CPU) to store and serve chunks. But what determines who is keeping a chunk? Swarm nodes have an address (the hash of the address of their bzz-account) in the same keyspace as the chunks themselves. Lets call this address space the overlay network. If we upload a chunk to the Swarm, the protocol determines that it will eventually end up being stored at nodes that are closest to the chunk’s address (according to a well-defined distance measure on the overlay address space). The process by which chunks get to their address is called syncing and is part of the protocol. Nodes that later want to retrieve the content can find it again by forwarding a query to nodes that are close the the content’s address. Indeed, when a node needs a chunk, it simply posts a request to the Swarm with the address of the content, and the Swarm will forward the requests until the data is found (or the request times out). In this regard, Swarm is similar to a traditional distributed hash table (DHT) but with two important (and under-researched) features.

  • Vitalik’s whitepaper the Ethereum dev core realised
  • When she reached the first hills
  • A small river named Duden flows
  • Self-sustaining due to a built-in incentive system
Documents and the Swarm hash

On the API layer Swarm provides a chunker. The chunker takes any kind of readable source, such as a file or a video camera capture device, and chops it into fix-sized chunks. These so-called data chunks or leaf chunks are hashed and then synced with peers. The hashes of the data chunks are then packaged into chunks themselves (called intermediate chunks) and the process is repeated. Currently 128 hashes make up a new chunk. As a result the data is represented by a merkle tree, and it is the root hash of the tree that acts as the address you use to retrieve the uploaded file.

This Is An Awesome Sticky Post

A wonderful serenity has taken possession of my entire soul, like these sweet mornings of spring which I enjoy with my whole heart. I am alone, and feel the charm of existence in this spot, which was created for the bliss of souls like mine. I am so happy, my dear friend, so absorbed in the exquisite sense of mere tranquil existence, that I neglect my talents. I should be incapable of drawing a single stroke at the present moment; and yet I feel that I never was a greater artist than now.

When, while the lovely valley teems with

vapour around me, and the meridian sun strikes the upper surface of the impenetrable foliage of my trees, and but a few stray gleams steal into the inner sanctuary, I throw myself down among the tall grass by the trickling stream; and, as I lie close to the earth, a thousand unknown plants are noticed by me: when I hear the buzz of the little world among the stalks, and grow familiar with the countless indescribable forms of the insects and flies, then I feel the presence of the Almighty, who formed us in his own image, and the breath of that universal love which bears and sustains us, as it floats around us in an eternity of blist.

I sink under the weight of the splendour of these visions!A wonderful serenity has taken possession of my entire soul, like these sweet mornings of spring which

I sink under the weight of the splendour of these visions!A wonderful serenity has taken possession of my entire soul, like these sweet mornings of spring which I enjoy with my whole heart. I am alone, and feel the charm of existence in this spot, which was created for the bliss of souls like mine. I am so happy, my dear friend, so absorbed in the exquis

I throw myself down among the tall grass

I should be incapable of drawing a single stroke at the present moment; and yet I feel that I never was a greater artist than now. When, while the lovely valley teems with vapour around me, and the meridian sun strikes the upper surface of the impenetrable foliage of my trees, and but a few stray gleams steal into the inner sanctuary, I throw myself down among the tall grass by the trickling stream; and, as I lie close to the earth, a thousand unknown plants are noticed by me: when I hear the buzz of the little world among the stalks, and grow familiar with the countless indescribable forms of the insects and

Text, that where it came from it

Far far away, behind the word mountains, far from the countries Vokalia and Consonantia, there live the blind texts. Separated they live in Bookmarksgrove right at the coast of the Semantics, a large language ocean. A small river named Duden flows by their place and supplies it with the necessary regelialia. It is a paradisematic country, in which roasted parts of sentences fly into your mouth. Even the all-powerful Pointing has no control about the blind texts it is an almost unorthographic life One day however a small line of blind text by the name of Lorem Ipsum decided to leave for the far World of Grammar. The Big Oxmox advised her not to do so, because there were thousands of bad Commas, wild Question Marks and devious Semikoli, but the Littl

  • Far far away, behind the word mountain
  • When she reached the first hills
  • A small river named Duden flows
  • A small river named Duden flows by their plat.
  • Far far away, behind the word mountain

Copy Writers ambushed her, made her drunk with Longe and Parole and dragged her into their agency, where they abused her for their projects again and again. And if she hasn’t been rewritten, then they are still using her.Far far away, behind the word mountains, far from the countries Vokalia and Consonantia, there live the blind texts. Separated they live in Bookmarksgrove right at the coast of the Semantics, a large language ocean. A small river named Duden flows by their plate.


Translate »